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Abstract Introduction: We investigated the effect of combining exercise training and treat-
ment with an endocannabinoid receptor 1 inhibitor (Rimonabant) on atherosclerosis burden
and composition.
Methods: Forty-eight apolipoprotein E-deficient (ApoE-/-) mice were kept on a 16-week high-
fat diet. Mice were then placed on a normal diet and were randomized to the following groups
with nZ 12 mice for 6 more weeks: 1) Control (Co) - no intervention; 2) Exercise (Ex) - exercise
training on treadmill; 3) Rimonabant (Ri) - oral administration of rimonabant (10 mg/kg/day);
or 4) RimonabantþExercise (RiEx) - combination of Ri and Ex groups treatment. At the end, all
animals were sacrificed, and blood samples, as well as aortic root specimens, were obtained
for histomorphometric analysis and quantification of the serum and plaque content of matrix
metalloproteinases (MMPs).
Results: The mean plaque area was significantly smaller (RiEx: 43.18� 1.72%, Ri: 44.66� 3.1%,
Ex: 49 � 4.10%, Co: 70.43 � 2.83%) in all active treatment groups relative to the Co group
(p< 0.01). Conversely, the relative concentrations of collagen and elastin were increased
significantly across all treatment groups compared to Co (p< 0.05). Immunohistochemical
analysis revealed significantly reduced macrophage content within plaques after all
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interventions, with the most pronounced effect observed after combined treatment (RiEx:
9.4� 3.92%, Ri: 15� 2.45%, Ex: 19.78� 2.79%, Co: 34.25� 4.99%; p< 0.05). Within plaques,
the TIMP-1 concentration was significantly upregulated in exercise-treated groups. MMP-3
and MMP-9 concentrations were equivalently decreased in all three active treatment groups
compared to controls (p< 0.001).
Discussion: Both exercise and rimonabant treatments induced plaque regression and promoted
plaque stability. The combined treatment failed to show additive or synergistic benefits rela-
tive to either intervention alone.
ª 2016 Hellenic Society of Cardiology. Publishing services by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
1. Introduction

Atherosclerosis-related cardiovascular diseases (CVDs)
remain the leading cause of mortality globally.1 They are
primarily characterized by chronic inflammation and com-
plex, slow-progressing vascular dysfunction.2 There are a
plethora of data supporting the involvement of zinc pro-
teolytic enzymes, known as matrix metalloproteinases
(MMPs), and their inhibitors (TIMPs) in inflammatory path-
ways, atherogenesis and atherosclerotic plaque
destabilization.3e5 The MMPs/TIMP-1 ratio determines
whether extracellular matrix (ECM) is degraded and is thus
an essential part of plaque development and disruption.6,7

Systemic exercise training has become the cornerstone of
effective prevention of atherosclerotic CVDs in humans.8e10

Although the precise mechanisms are not fully understood,
there are several studies documenting its beneficial multi-
variate action in targeting plaque burden and
composition.11e13 In parallel, a growing body of pharmaceu-
tical agents aims to reduce the development of atheroscle-
rosis, these agents include statins14 and other novel
pharmaceutical drugs.15,16 Cannabinoid receptors, endo-
cannabinoids and the enzymes that catalyze their synthesis
and degradation constitute the endocannabinoid system,
which plays an important role in the cardiovascular system.17

An inhibitor of the endocannabinoid receptors 1 (CB1),
rimonabant, emerged as a promising treatment for obesity,
metabolic disorders and CVDs.18 Despite the positive results
from animal studies where rimonabant reduced atheroscle-
rotic lesions and inflammation by decreasing MMP-9,19 CB1-
inhibition failed to demonstrate such beneficial effects in
humans and was discontinued due to adverse side effects.20

Since there are several studies that demonstrate a link
between exercise and the endocannabinoid system, 21e23

we investigated the possibility of a complementary action
of rimonabant and exercise training on atherosclerotic
plaque burden and plaque stability using a well-studied
animal model of atherosclerosis (Apolipoprotein E-defi-
cient mice, ApoE-/-).

2. Methods

2.1. Animal study design

Forty-eight male ApoE-/- mice (C57BL/6 J background,
20e25 g), backcrossed for ten generations (Charles Rivers
Laboratories, Milan, Italy), weremaintained in rooms under a
12/12 h light/dark cycle with lights on at 07:00 am, a tem-
perature of 24� 2�C, and relative humidity of 55� 10%. Food
and water were provided ad libitum. At the age of eight
weeks, body weight was recorded and the diet was switched
to aWestern-type diet (42% of total calories frommilk fat and
0.15% from cholesterol; Harlan Teklad TD 88137; Harlan,
Boxmeer, Netherlands) for 16 weeks. Then, blood samples
were drawn and all mice were placed on a normal diet and
randomly assigned to one of the following groups for an
additional six weeks: 1) Control (Co, nZ 12) mice were kept
in their cage without any other intervention; 2) Exercise (Ex,
nZ 12) - this group underwent exercise training (described
below); 3) Rimonabant (Ri, nZ 12) -mice received 10mg/kg/
day p.o. rimonabant (Sanofi-Aventis, Paris, France) via
gavage; or 4) RimonabantþExercise (RiEx, nZ 12) - the
combined treatment was performed as for groups Ex and Ri.
At the end of the 6-week period all animals were sacrificed
under isoflurane (Forenium, Abbot, Italy) anesthesia. The
study design is shown in Figure 1.

All experiments were performed in accordance with the
guidelines of the Veterinary Service of the Prefecture of
Athens, as required by the Greek legal requirements for
animal experimentation to the European Union Directive
86/609 of the Council of European Communities and were
approved by the Ethics Committee for Animal Experimen-
tation of the Foundation of Biomedical Research of the
Academy of Athens.

2.2. Exercise training

All animals in groups Ex and RiEx were trained on a motor
treadmill (Exer-6M Open Treadmill; Columbus Instruments,
Columbus, Ohio, USA) with a rubber belt for a total of 6
weeks, 5 days/week, 60 min/day, with a 2-minute inter-
mediate rest interval, and a slope of 50. For exercise
acclimation, the treadmill speed was initially set to 7 m/
min and was then increased to a maximum speed of 15 m/
min by the end of the second week; thereafter the speed
was kept constant. All mice tolerated the exercise protocol
well throughout the study.

2.3. Tissue processing

At euthanasia, the heart and the aorta were washed thor-
oughly with phosphate-buffered saline (PBS) via cardiac
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Figure 1 Study design. Groups: RiEx, Rimonabant þ Exercise; Ri, Rimonabant; Ex, Exercise; Co, Control.
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puncture. Thereafter, the aortic root was excised and fixed
in 10% buffered formalin for 24 h and then embedded in
paraffin blocks. Only sections containing aortic leaflets
were used; 3 sections of 5-mm thickness, equally separated
x 100 mm distance, were harvested per slice following a
previously described procedure.13

2.4. Plaque morphometry and composition

A single observer blinded to group allocation performed all
analyses. Three sections per slice from 6 slices per animal
were stained with hematoxylin/eosin for morphometric
analysis.12,13 Images obtained using a microscope (CX31,
Olympus, UK) were analyzed with Image-Pro Plus software
(Version 4.1; Media Cybernetics, USA). The total lumen area
and the total plaque area were measured in all sections of
the aortic arch, and the mean plaque area (�SD) was then
calculated for each mouse and each treatment group.

Histochemical analyses of the plaques were performed
using Sirius Red and Orcein stains for collagen and elastin,
respectively (Figure 2). Immunohistochemical analyses were
performed to detect macrophages (antibodies against Mac-3
antigen, dilution 1:50, Pharmingen, USA), vascular smooth
muscles cells (antibodies against the a-smooth muscle iso-
form of actin, dilution 1:100; Biocare Medical, LLC, USA),
MMP-2 and MMP-3 (dilution 1:300; MBL, USA), MMP-9 (dilu-
tion 1:300; AbD Serotec, UK) and TIMP-1 (dilution 1:300;
Triple Point Biologics Inc., USA) (Figure 3). To quantify the
relative concentrations of stained molecules by histochem-
istry or immunohistochemistry, the segmental stained pla-
que area was expressed as the percentage of the whole
atherosclerotic plaque area, as previously described.12,13

2.5. Blood assays

Blood samples were obtained at 24 and 30 weeks of age for
all groups. Plasma levels of glucose, triglycerides (TG), and
total cholesterol (TC) were determined using an enzymatic
technique (Chemwell 2910; Awareness Technology Inc.,
USA). Serum levels of MMP-2, MMP-3, MMP-9 and TIMP-1
were assayed using commercially available ELISA kits for
mice (R&D Systems Inc., Minneapolis, USA) according to the
manufacturer’s protocol.

2.6. Statistical analysis

All data were expressed as the mean� SD and analyzed by
SPSS (version 16.0; SPSS Inc., Chicago, USA). Data analyses
was performed using a paired t-test to compare the dif-
ferences within groups or a one-way ANOVA with Tukey’s
post hoc test to compare the differences between groups at
the end of the study. A p value <0.05 was considered sta-
tistically significant.

3. Results

3.1. Body weight, fasting glucose and lipids

During the entire experiment, no local or systemic adverse
effects were observed. There were no significant changes in
body-weight within groups or between groups at the end of
the study as shown in Table 1 (p> 0.05). Fasting glucose
only changed significantly within the control group
(130� 15 mg/dl vs 174� 57 mg/dl, pZ 0.045). Total
cholesterol was significantly reduced within the RiEx group
(from 612� 189 mg/dl to 443� 123 mg/dl, pZ 0.031),
while the RiEx and Ex groups had lower total cholesterol
levels than the Co group before euthanasia (p< 0.05). In
parallel, triglycerides were considerably reduced only in
the Ex group relative to the RiEx (pZ 0.030) and Co
(p< 0.001) groups (Table 1).

3.2. Serum MMPs and TIMP-1

Serum MMPs and TIMP-1 levels are shown in Table 1. At
baseline, serum concentrations of MMPs and TIMP-1 did not
differ between groups (p> 0.05). Statistical analysis
revealed significant changes in MMP-3, MMP-9 and TIMP-1
concentrations within all groups (p< 0.05). At the end of
the study, MMP-3, MMP-9, and TIMP-1 levels improved in all
active treatment groups relative to the Co group (p< 0.05).



Figure 2 Representative photos of histochemical and immumohistochemical stains of aortic arch sections, for the analysis of
plaque morphology and composition. A: Haematoxylin & Eosin stain B: Orcein stain (Elastin molecules) C: Sirius red stain (Colagen)
D: Immunohistochemical anti-MMP3 stain. Original magnification: 40x.
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Compared to the rest of the groups (p< 0.05), RiEx and Ri
interventions had a greater effect on MMP-3 levels and RiEx
and Ex interventions had a greater effect on MMP-9 levels.
No significant differences were observed within or between
groups for MMP-2 serum levels by one-way ANOVA
(p> 0.05).

3.3. Plaque morphometry and composition

In all treatment groups, the mean atherosclerotic plaque
area was significantly smaller than that of the Co group
(p< 0.05). Between group comparisons revealed greater
reductions in the atherosclerotic plaque burden in
rimonabant-treated groups (RiEx, Ri) than for mice treated
with exercise alone (p< 0.010). Conversely, the collagen
and elastin concentrations were significantly increased
across all treatment groups relative to the Co group
(p< 0.05). There was a trend towards plaques in the Ri
group having greater elastin content than those in the Ex
group (pZ 0.051) (Table 2).

Based on immunohistochemical analysis, all in-
terventions significantly reduced the macrophage content
of plaques (overall one-way ANOVA, p< 0.001), while the
most pronounced effect was observed with combined
treatment (p< 0.05). However, none of the treatment
modalities had a statistically significant effect on the VSMC
content (overall one-way ANOVA, pZ 0.115) (Table 2).

Table 3 shows the relative concentrations of the stained
molecules by histochemistry or immunohistochemistry.
Unlike MMP-2, both MMP-3 and MMP-9 were significantly
reduced in all intervention groups relative to the control
group (p< 0.001). For MMP-3, exercise alone showed higher
efficacy than Ri intervention (pZ 0.010). Finally, TIMP-1
concentrations were significantly increased in exercise-
treated groups (RiEx, Ex) compared to controls (p< 0.001).

4. Discussion

In the present study, the 6-week intervention with rimo-
nabant administration and exercise training, either alone or
combined, reduced the size of atherosclerotic lesions and
induced a more stable plaque phenotype relative to un-
treated hypercholesterolemic mice, even in the absence of
significant changes in body-weight. Among the examined
parameters, rimonabant and exercise training exerted only
complementary effects on macrophages, while they
improved collagen and elastin content, MMP-3 concentra-
tions, and MMP-9 concentrations equivalently, with no
additional benefit from the combination.

The anti-atherosclerotic actions of systemic exercise
have been well-documented in animal studies.12 However,
most but not all previous studies have shown suppressed
atherosclerosis development in hypercholesterolemic mice
treated with rimonabant.24e26 In our study, all therapeutic
modalities (Ri, Ex, and RiEx) significantly decreased the
extent of the aortic atherosclerotic lesions compared to
controls. The clinical extrapolation of this result should be
done with caution; in the AUDITOR trial, the 30-month
treatment with rimonabant led to 5% loss of body weight,
but it did not attenuate early carotid atherosclerosis pro-
gression relative to placebo.27 The observed reduction in
the mean plaque area after combined treatment in our
study was not statistically different from either intervention



Figure 3 Representative photos of immunohistochemical stains for the visualization of MMP-3, MMP-9, TIMP-1 and mac-3 antigens
in sections of the aortic arch of experimental groups. CO: Control group; Ri: Rimonabant group; Ex: Exercise group; RiEx: Combined
treatment group. Original magnification: 100x.
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alone; thus no complementary anti-atherosclerotic effects
were detected. It is possible that these two interventions
might act simultaneously on a common pathway, which
should be investigated further in future studies.

It is worth mentioning that the aforementioned results
occurred despite the absence of significant weight-loss
following either rimonabant or exercise treatment. Since
the regulation of atherogenesis is multifactorial, perhaps,
other non-traditional mechanisms have mediated athero-
sclerosis regression. Mohapatra et al.28 reported an anti-
inflammatory effect of rimonabant secondary to weight
loss. Previously published studies have demonstrated a
complicated interplay between the endocannabinoid sys-
tem and atherosclerosis. In these studies, the direct inhi-
bition of cannabinoids counteracted pro-inflammatory,
lipid-mediated, and oxidative mechanisms that are poten-
tially associated with atherogenesis.25,29,30

One of the most striking findings of the present study
was the exercise-related and rimonabant-related stable
phenotype of the atherosclerotic plaques. Pathological
studies have indicated that ECM proteins and macrophages
within atherosclerotic plaques are the predominant de-
terminants of plaque stability.31,32 In our study, collagen
and elastin increased, while the relative concentration of
macrophages decreased within plaques of exercise- and
rimonabant-treated mice. A previous study has confirmed
the effect of exercise on mouse macrophages,33 but pre-
vious work has not investigated macrophages after CB1 in-
hibition. Accumulating clinical evidence highlights the
importance of plaque texture in CVDs, especially in cases of
moderate artery narrowing.34 Pharmaceutical modalities
targeting plaque stability rather than interventions tar-
geting lumen patency have emerged as promising thera-
peutic approaches for atherosclerosis-related CVDs.

It is well-known that MMPs regulate ECM remodeling and
inflammatory cell infiltration,35 the mainstays of athero-
sclerosis development.3,36 Thus, the pharmaceutical inhi-
bition of MMPs and inflammation may yield important anti-
atherosclerotic benefits.37 A complex interplay between
MMPs and endocannabinoids via their binding to trans-
membrane receptors (CB1, CB2)38,39 could affect plaque
development and intraplaque vulnerability.40 Montecucco
et al.39 assayed CB2 expression and activity within carotid
plaques obtained from patients with or without ipsilateral
ischemic stroke. CB2 was significantly downregulated in the
former group. Moreover, treatment of high-fat fed ApoEe/e

mice with CB2 antagonists further decreased MMP-9 con-
tent in their aortic root and carotid plaques. In the present



Table 1 Body weight, lipid levels, plasma MMP-2, MMP-3, MMP-9 and TIMP-1 concentrations at baseline (24 weeks) and at the end (30 weeks) of the study in apoE e/e mice.

Groups Rimonabant þ
Exercise(nZ 12)

Rimonabant(nZ 12) Exercise(nZ 12) Control(nZ 12) P P1 P2 P3 P4 P5 P6

Weight (g)
Baseline 32.3� 4.55 32.3� 7.98 33.3� 8.08 32.85� 7.99 0.854 0.712 0.923 0.449 0.795 0.732 0.634
End 29.7� 5.05 33.1� 4.55 31.84� 3.27 34.66� 4.29
Glucose (mg/dl)
Baseline 137� 30 128� 42 131� 33 130� 15 0.809 0.960 0.998 0.773 0.978 0.907 0.993
End 174� 58 189� 45 154� 48 174� 57*
TC (mg/dl)
Baseline 612� 189 798� 219 664� 198 612� 243 0.048 0.498 0.589 0.021 0.672 0.082 0.037
End 443� 123* 712� 223 506� 110 779� 311
TG (mg/dl)
Baseline 242� 23 264� 133 289� 32 254� 36 0.044 0.334 0.030 0.991 0.128 0.434 <0.001
End 295� 29 255� 114 196� 21* 366� 32*
MMP-2 (ng/ml)
Baseline 119.11� 73.65 119.52� 82.47 104.81� 23.86 121.51� 44.18 0.671 0.590 0.821 0.143 0.901 0.427 0.884
End 158.2� 32.72 132.1� 20.24 116.66� 69.21 123.62� 45.15
MMP-3 (ng/ml)
Baseline 64.67� 15.46 51.02� 9.9 62.21� 10.93 52.72� 12.04 0.021 0.113 0.047 <0.001 0.035 <0.001 0.003
End 20.78� 23.63* 26.44� 8.7* 53.99� 34.62* 70.89� 37.98*
MMP-9 (ng/ml)
Baseline 29.44� 9.46 26.64� 8.8 28.7� 9.25 24.2� 11.01 0.005 0.222 0.885 <0.001 0.028 <0.001 <0.001
End 10.48� 6.91* 19.85� 5.99* 12.96� 8.82* 29.51� 2.09*
TIMP-1 (pg/ml)
Baseline 1871.3� 575.72 1881.08� 301.28 1783.44� 443.54 1765.12� 479.31 <0.001 0.901 <0.001 <0.001 <0.001 <0.001 <0.001
End 2275.51� 287.5 2132.39� 498.32 3115.46� 720.56 1434.7� 94.56

TC, total cholesterol; TG, triglycerides; P, one-way ANOVA; P1, RiEx vs R; P2, RiEx vs Ex; P3, RiEx vs Co; P4, Ri vs Ex; P5, Ri vs Co; P6, Ex vs Co; *p< 0.05, within groups (paired samples t-
test within groups).
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Table 2 Effects on the plaque area, percentage of luminar stenosis, collagen, elastin, VSMC, macrophage content of the
atherosclerotic plaques at the end (30 weeks) of the study in ApoE e/e mice.

Groups Rimonabant þ
Exercise

Rimonabant Exercise Control P P1 P2 P3 P4 P5 P6

Plaque area/
Lumen
area(%)

43.18� 1.72 44.66� 3.1 49� 4.10 70.43� 2.83 <0.001 0.995 0.246 <0.001 0.681 0.001 0.006

Collagen
(% plaque)

43.5� 5.99 34� 3.53 35.73� 7.39 24.46� 12.25 <0.001 0.122 0.089 <0.001 0.975 0.178 0.023

Elastin
(% plaque)

32.3� 11.14 36.33� 5.85 27.14� 3.44 17.85� 2.87 <0.001 0.672 0.301 0.002 0.051 <0.001 0.048

VSMC (%plaque) 15.83� 4.08 17� 4.76 14.14� 5.18 8.91� 2.76 0.115 0.984 0.705 0.130 0.668 0.177 0.423
Macrophages

(% plaque)
9.4� 3.92 15� 2.45 19.78� 2.79 34.25� 4.99 <0.001 <0.001 <0.001 <0.001 0.038 <0.001 <0.001

P, one-way ANOVA; P1, RiEx vs R; P2, RiEx vs Ex; P3, RiEx vs Co; P4, Ri vs Ex; P5, Ri vs Co; P6, Ex vs Co; p< 0.05.

Table 3 Effects on the percentage of MMP-2, MMP3, MMP-9 and TIMP-1 content of the atherosclerotic plaques at the end (30
weeks) of the study in ApoE e/e mice.

Groups Rimonabant þ
Exercise

Rimonabant Exercise Control P P1 P2 P3 P4 P5 P6

MMP-2
(% plaque)

6.43� 3.46 7.01� 1.21 4.85� 1.55 3.97� 0.46 0.108 0.701 0.231 0.178 0.798 0.124 0.665

MMP-3
(% plaque)

4.64� 0.18 5.62� 0.27 3.94� 1.04 9.53� 1.69 <0.001 0.349 0.505 <0.001 0.010 <0.001 <0.001

MMP-9
(% plaque)

7.82� 2.99 8.67� 3.33 11.15� 4.44 18.09� 4.47 <0.001 0.973 0.167 <0.001 0.565 0.001 0.005

TIMP-1
(% plaque)

11.23� 3.7 11� 5.35 14.54� 3.48 6.31� 1.46 0.001 0.999 0.116 0.042 0.332 0.197 <0.001

P, one-way ANOVA; P1, RiEx vs R; P2, RiEx vs Ex; P3, RiEx vs Co; P4, Ri vs Ex; P5, Ri vs Co; P6, Ex vs Co; p< 0.05.
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study, the retardation and stabilization of plaques paral-
leled the suppression of MMP-3 and MMP-9 across groups.
The amount of change in these MMPs was the same for
exercise and rimonabant therapeutic modalities. Moreover,
the combined treatment did not further decrease MMP
levels relative to each intervention alone. We hypothesize
that all treatment modalities exert equivalent MMP-related
plaque-stabilizing actions. However, the proposed mecha-
nisms require further investigation.

In contrast, both circulating and intraplaque concen-
tration of MMP-2 were not affected by either rimonabant or
exercise training. This finding may mirror the absence of
any change in its cellular source, VSMCs. Although some
reports have shown that exercise training40 and endo-
cannabinoids modulate the migration of VSMCs,41 we did
not detect any effect on their concentrations. Perhaps,
improved laboratory techniques are necessary for the
identification of VSMC functions within atherosclerotic
plaques.

Another important finding was the considerable
improvement in circulating MMP-3, MMP-9 and TIMP-1 levels
over the 6-week treatment period in all active treatment
groups, implicating an atheroprotective effect. The rela-
tive concentrations of MMP-3, MMP-9 and TIMP-1 within
plaques almost paralleled the respective serum values
across groups at the end of the study. It is worth mentioning
that the wide-spectrum MMP inhibitor, TIMP-1, has been
extensively reported to contribute to atherosclerotic pla-
que stability.42 In our study, exercise therapy predomi-
nantly upregulated intraplaque TIMP-1 activity, while
rimonabant treatment alone tended to increase TIMP-1. All
treatment modalities significantly shifted the MMP-9/TIMP-
1 equilibrium to be less proteolytically active, implicating
an atheroprotective mechanism. Thus, from our results we
could not infer superiority of any intervention. However,
this is only a small part of the regulatory mechanisms in
atherosclerosis and cannot describe the whole spectrum of
plaque phenotypes. Perhaps, additional mechanisms are
involved in plaque texture modification, which are beyond
the scope of the present study.

There are several drawbacks to the present study. First,
we used a valid animal model of atherosclerosis develop-
ment in which spontaneous plaque rupture is rarely
observed. Thus, we estimated plaque vulnerability indirectly
via the quantification of ECM components and inflammatory
cell infiltration. Second, the immunohistochemistry-based
measurements do not directly express absolute protein ac-
tivity, but instead provide a relative quantification of
molecule concentrations. Third, TIMP-1 is a wide-spectrum
MMP inhibitor that forms complexes with MMPs. These
complexes inhibit the proteolytic activity of MMPs and
concomitantly promote the activation of MMP pro-enzymes.
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Thus, the immunohistochemical staining cannot distinguish
the free-molecule content. Finally, several reports from
medical societies about increased incidence of psychiatric
side-effects, including depression and suicide, led American
and European drug authorities to suspend rimonabant across
the world. Despite the withdrawal of rimonabant, the study
of the endocannabinoid system and its actions remains an
intriguing field of scientific research and it may be of great
interest to test an even lower dose, such as 1 mg/kg to
0.5 mg/kg to reduce side effects.43

In conclusion, rimonabant treatment and exercise
training either alone or combined induce plaque regression
and increase stability without any complementary effects
of combining rimonabant and exercise training. Overall, the
specific role of endocannabinoid signaling during athero-
sclerosis remains to be better elucidated.
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